[1]Yang, J., Liu, J., et al. A multiscale poroelastic damage model for fracturing in permeable rocks.Int. J. Rock Mech. Min. Sci., 2024, 175: 105676. doi:10.1016/j.ijrmms.2024.105676. (SCI,中科院1区, IF: 7.2)
[2]Yang, J., Liu, J., et al. Multiscale modelling of gas-induced fracturing in anisotropic clayey rocks.J. Rock Mech. Geotech. Eng., 2024.(SCI,中科院1区, IF: 7.3)
[3] Liu, J., Qiu, X.,Yang, J.*, et al. Failure transition of shear-to-dilation band of rock salt under triaxial stresses.J. Rock Mech. Geotech. Eng., 2024, 16(1): 56-64. doi: 10.1016/j.jrmge.2023.03.015. (SCI,中科院1区, IF: 7.3)
[4] Liu, J., He, X., Huang, H.,Yang, J.*, et al. Predicting gas flow rate in fractured shale reservoirs using discrete fracture model and GA-BP neural network method.Eng. Anal. Bound. Elem., 2024, 159: 315-330. doi:10.1016/j.enganabound.2023.12.011. (SCI,中科院2区, IF: 3.3)
[5]Yang, J., Liu, J., Huang, H., et al. An equivalent thermo-hydro-mechanical model for gas migration in saturated rocks.J. Nat. Gas Sci. Eng.,2023:205110, doi: 10.1016/j.jgsce.2023.205110. (SCI,中科院2区, IF: 5.3)
[6]Yang, J.& Fall, M. Coupled two-phase flow and elastodamage modeling of laboratory and in situ gas injection experiments in saturated claystone as a potential host rock for nuclear waste repository.Int. J. Geomech.,2023,23(4): 04023023. doi: 10.1061/IJGNAI.GMENG-7968. (SCI,中科院2区, IF: 3.7)
[7] Lin, H., Liu, J.,Yang, J.*, et al. Analysis of damage characteristics and energy evolution of salt rock under triaxial cyclic loading and unloading.J. Energy Storage,2022,56: 106145. doi: 10.1016/j.est.2022.106145. (SCI,中科院2区Top, IF: 9.4)
[8] Fang, K.,Yang, J.*& Wang, Y. Comparison of the mode I fracture toughness of different cemented paste backfill-related structures: Effects of mixing recipe.Eng. Fract. Mech., 2022, 270: 108579. doi: 10.1016/j.engfracmech.2022.108579. (SCI,中科院2区Top, IF: 5.4)
[9]Yang, J.& Fall, M. Hydro-mechanical modelling of gas transport in clayey host rocks for nuclear waste repositories.Int. J. Rock Mech. Min. Sci.,2021,148: 104987. doi: 10.1016/j.ijrmms.2021.104987. (SCI,中科院1区, IF: 7.2)
[10]Yang, J.& Fall, M. Coupled hydro-mechanical modelling of dilatancy controlled gas flow and gas induced fracturing in saturated claystone.Int. J. Rock Mech. Min. Sci.,2021,138: 104584. doi: 10.1016/j.ijrmms.2020.104584. (SCI,中科院1区, IF: 7.2)
[11]Yang, J.&Fall, M. A dual porosity poroelastic model for simulation of gas flow in saturated claystone as a potential host rock for deep geological repositories.Tunn. Undergr. Space Technol.,2021,115: 104049. doi: 10.1016/j.tust.2021.104049. (SCI,中科院1区, IF: 6.9)
[12]Yang, J.& Fall, M. A two-scale hydro-mechanical-damage model for simulation of preferential gas flow in saturated clayey host rocks for nuclear repository.Comput. Geotech.,2021,138: 104365. doi: 10.1016/j.compgeo.2021.104365. (SCI,中科院1区, IF: 5.3)
[13]Yang, J.& Fall, M. A two-scale time dependent damage model for preferential gas flow in clayey rock materials.Mech. Mater.,2021,158: 103853. doi: 10.1016/j.mechmat.2021.103853. (SCI,中科院3区, IF: 3.9)
[14]Yang, J., Fall, M. & Guo, G. A three-dimensional hydro-mechanical model for simulation of dilatancy controlled gas flow in anisotropic claystone.Rock Mech. Rock Eng.,2020,53(9): 4091-4116. doi: 10.1007/s00603-020-02152-w. (SCI,中科院2区, IF: 6.2)