第一或通讯作者论文(*通讯作者):
1.Wang, Y., Li, Y., Wang, G., Li, Y., Sun, X., Wang, W.,Song, C.*(2025).Diverse Altitudinal Patterns and Drivers of Greenhouse Gas Dynamics in Southwest China Alpine Streams and Rivers.Journal of Geophysical Research – Biogeosciences, 130(2),e2024JG008458.https://doi.org/10.1029/2024JG008458.
2.Li, Y., Wang, G., Wang, W., Sun, X., Li, Y., Xiao, J., Xie, W., Ding, J.,Song, C.*(2025). Ultraviolet radiation stimulates the degradability of groundwater-fed DOC during the baseflow period of streams on the Qinghai-Tibet Plateau permafrost region.Journal of Hydrology,653,132751,https://doi.org/10.1016/j.jhydrol.2025.132751.
3.Song, C.*#,Liu, S.#,Wang, G.*#,Zhang, L., Rosentreter, J. A., Zhao, G., Sun, X., Yao, Y., Mu, C., Sun, S., Hu, Z., Lin, S., Sun, J., Li, Y., Wang, Y., Li, Y., Raymond, P. A., Karlsson, J. (2024).Inland water greenhouse gas emissions offset the terrestrial carbon sink in the northern cryosphere.Science Advances,10(39), eadp0024.https://doi.org/10.1126/sciadv.adp0024
4.Li,Y.,Wang, G.*,Sun, S.,Lin, S., Huang,P.,Xiao, J.,Guo, L.,Li, J.,Song, C.*(2024).Methane emissions from the Qinghai-Tibet Plateau ponds and lakes: Roles of ice thaw and vegetation zone.Global Biogeochemical Cycles,38(4): e2024GB008106.https://doi.org/10.1029/2024GB008106
5.Li, J., Wang, G.*,Song, C.*,Sun, S.,Ma, J.,Wang,Y., Guo, L., Li, D. (2024). Recent Intensified Erosion and Massive Sediment Deposition in the Tibetan Plateau Rivers.Nature Communications15, 722.https://doi.org/10.1038/s41467-024-44982-0
6.Wang,Y., Wang, G., Sun, X., Li,J.,Song, C.*(2024). Spatiotemporal variability of organic carbon in streams and rivers of the Northern Hemisphere cryosphere.Science of The Total Environment,906,167370. https://doi.org/10.1016/j.scitotenv.2023.167370
7.Li, J., Wang, G.*,Li, K., Li, Y., Guo, L.,Song, C.*(2023). Impacts of climate change and freeze-thaw cycles on water and sediment fluxes in the headwater region of the Yangtze River, Qinghai-Tibet Plateau.Catena, 227C, 107112.https://doi.org/10.1016/j.catena.2023.107112
8.Song, C., Wang, G.*, Sun, X., Li, Y., Ye, S., Hu, Z., ... & Lin, S. (2023). Riverine CO2variations in permafrost catchments of the Yangtze River source region: Hot spots and hot moments.Science of The Total Environment, 863, 160948. https://doi.org/10.1016/j.scitotenv.2022.160948
9.Wang, Z., Sun, S., Wang, G. *, &Song, C.* (2023). Determination of Low-Flow Components in Alpine Permafrost Rivers.Journal of Hydrology, 617, 128886.https://doi.org/10.1016/j.jhydrol.2022.128886
10.Wang, Z., Sun, S.,Song, C.*, Wang, G.*, Lin, S., & Ye, S. (2022). Variation characteristics of high flows and their responses to climate change in permafrost regions on the Qinghai-Tibet Plateau, China.Journal of Cleaner Production, 376, 134369. https://doi.org/10.1016/j.jclepro.2022.134369
11.Song, C., & Wang, G.* (2021). Land carbon sink of the Tibetan Plateau may be overestimated without accounting for the aquatic carbon export.Proceedings of the National Academy of Sciences,118(46), e2114694118,https://doi.org/10.1073/pnas.2114694118(Letter)
12.Song, C.,Wang, G.*, Sun, X., & Hu, Z. (2021). River runoff components change variably and respond differently to climate change in the Eurasian Arctic and Qinghai-Tibet Plateau permafrost regions.Journal of Hydrology, 601, 126653, https://doi.org/10.1016/j.jhydrol.2021.126653
13.Song, C.,Wang, G.*, Hu, Z., Zhang, T., Huang, K., Chen, X., & Li, Y. (2020). Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale.Agricultural and Forest Meteorology,290, 108021, https://doi.org/10.1016/j.agrformet.2020.108021
14.Song, C., Wang, G.*, Haghipour, N., & Raymond, P. A.(2020). Warming and monsoonal climate lead to a large export of millennial-aged carbon from permafrost catchments of the Qinghai-Tibet Plateau.Environmental Research Letters, 15(7): 074012. https://doi.org/10.1088/1748-9326/ab83ac
15.Song, C.,Wang, G.*, Mao, T., Huang, K., Sun, X., Hu, Z.,Chang, R., Chen, X.,Raymond, P. A. (2020). Spatiotemporal variability and sources of DIC in permafrost catchments of the Yangtze River source region: insights from stable carbon isotope and water chemistry.Water Resources Research, 56(1): e2019WR025343. https://doi.org/10.1029/2019WR025343
16.Song, C.,Wang, G.*, Mao, T., Dai, J., & Yang, D. (2020). Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau.Science China Earth Sciences, 63(2): 292-302. https://doi.org/10.1007/s11430-018-9383-6
17.Song, C., Wang, G.*, Mao, T., Chen, X., Huang, K., Sun, X., & Hu, Z. (2019). Importance of active layer freeze-thaw cycles on the riverine dissolved carbon export on the Qinghai-Tibet Plateau permafrost region.PeerJ, 7:e7146. https://doi.org/10.7717/peerj.7146
18.Song, C., Wang, G.*, Liu, G., Mao, T., Sun, X., & Chen, X. (2017). Stable isotope variations of precipitation and streamflow reveal the young water fraction of a permafrost watershed.Hydrological Processes, 31(4), 935-947. https://doi.org/10.1002/hyp.11077
19.Song, C., Wang, G.*, Sun, X., Chang, R., & Mao, T. (2016). Control factors and scale analysis of annual river water, sediments and carbon transport in China.Scientific Reports, 6:25963. https://doi.org/10.1038/srep25963
20.李宇灏,王根绪,李阳,宋春林*(2023).长江源多年冻土区河流溶解性有机碳的时空动态和同位素特征.冰川冻土, 2023, 45(2): 738-752.
21.叶思露,叶虎林,赵静毅,邹海明,郭林茂,宋春林*(2023).长江黄河源区不同径流组分变化及成因分析.中国农村水利水电,2023(6):79-85+94.
22.宋春林,孙向阳,王根绪* (2015).森林生态系统碳水关系及其影响因子研究进展.应用生态学报,2015, 26(9): 2891-2902.
23.宋春林,孙向阳,王根绪* (2015).贡嘎山亚高山降水稳定同位素特征及水汽来源研究.长江流域资源与环境, 2015, 24(11): 1860-1869.
合著论文(*通讯作者;#相同贡献):
1.Guo, L.,Wang,G.,Song,C.,Sun, S.,Li,J.,Li,K., &Ma,J. (2025). Ground thermal regime changes caused by integrated warming, wetting, and greening in permafrost regions of the Qinghai-Tibetan Plateau.Catena,249, 108658.
2.Li, J., Wang, G., Sun, S., Ma, J., Guo, L.,Song, C., & Lin, S. (2025). Mapping and reconstruct suspended sediment dynamics (1986–2021) in the source region of the Yangtze River, Qinghai-Tibet Plateau using Google Earth Engine.Remote Sensing of Environment,317, 114533.
3.Zhu, M., Kuang, X.,Song, C., Feng, Y., He, Q., Zou, Y., et al. (2024). Glacier-Fed Lakes Are Significant Sinks of Carbon Dioxide in the Southeastern Tibetan Plateau.Journal of Geophysical Research: Biogeosciences,129(4).e2023JG007774.
4.Lin, S., Sun, X., Huang, K., Song, C., Sun, J., Sun, S., ... & Hu, Z. (2024). The seasonal variability of future evapotranspiration over China during the 21st century.Science of The Total Environment, 171816.
5.Wang, Z., Sun, S., Wang, G. *, &Song, C.(2024). Spatial-Temporal Differentiation of Supra- and Sub-Permafrost Groundwater Contributions to River Runoff in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions.Water Resources Research, 60(3), e2023WR035913.
6.Sun, J., Sun, X., Wang, G., Dong, W., Hu, Z., Sun, S., ... & Lin, S. (2024). Soil water components control plant water uptake along a subalpine elevation gradient on the Eastern Qinghai-Tibet Plateau.Agricultural and Forest Meteorology,345, 109827.
7.Hu, Z., Wang, G., Sun, X., Huang, K.,Song, C., Li, Y., ... & Lin, S. (2024). Energy partitioning and controlling factors of evapotranspiration in an alpine meadow in the permafrost region of the Qinghai-Tibet Plateau.Journal of Plant Ecology, rtae002.
8.Sun, X., Zhang, X., Wang, G., Hu, Z.,Song, C., Lin, S., ... & Sun, S. (2023). An Increasing Effect of Soil Moisture on Semiempirical Water‐Use Efficiency Models From Wet to Dry Climate Regions.Journal of Geophysical Research: Biogeosciences,128(6), e2022JG007347.
9.Hu, Z., Sun, S., Sun, X., Lin, S.,Song, C., & Wang, G. (2023). Controlling Factors of the Spatial‐Temporal Fluctuations in Evapotranspiration Along an Elevation Gradient Across Humid Montane Ecosystems.Water Resources Research,59(1), e2022WR033228.
10.Lin, S., Wang, G., Hu, Z., Sun, X., Song, C., Huang, K., ... & Yang, Y. (2023). Contrasting response of growing season water use efficiency to precipitation changes between alpine meadows and alpine steppes over the Tibetan Plateau.Agricultural Water Management,289, 108571.
11.Sun,X.*,Wang,G.*,Sun,J.,Sun, S.,Hu,Z.,Song,C., &Lin,S. (2022). Contrasting water sources used by a coniferous forest in the high-altitude, southeastern Tibetan Plateau.Science of The Total Environment,849, 157913.
12.Li, Y., Wang, G., Bing, H., Wang, T., Huang, K.,Song, C., ... & Chang, R. (2021). Watershed scale patterns and controlling factors of ecosystem respiration and methane fluxes in a Tibetan alpine grassland.Agricultural and Forest Meteorology,306, 108451.
13.Rosentreter, J. A., Borges, A. V., Deemer, B. R., Holgerson, M. A., Liu, S.,Song, C., ... & Eyre, B. D. (2021). Half of global methane emissions come from highly variable aquatic ecosystem sources.Nature Geoscience,14(4), 225-230.
14.Huang, K.#, Dai, J.#, Wang, G.*, Chang, J., Lu, Y.,Song, C., ... & Ye, R.(2020). The Impact of Land Surface Temperatures on Suprapermafrost Groundwater on the Central Qinghai-Tibet Plateau.Hydrological Processes.
15.Sun, X., Wang, G.*, Huang, M., Chang, R., Hu, Z.,Song, C., & Sun, J. (2020). The asynchronous response of carbon gain and water loss generate spatio-temporal pattern of WUE along elevation gradient in southwest China.Journal of Hydrology, 581, 124389.
16.Song, X., Wang, G.*, Ran, F., Huang, K., Sun, J., &Song, C. (2020). Soil moisture as a key factor in carbon release from thawing permafrost in a boreal forest.Geoderma, 357, 113975.
17.Hu, Z., Wang, G.*, Sun, X., Wang, J., Chen, X.,Song, C., ... & Lin, S. (2019). Variations in belowground carbon use strategies under different climatic conditions.Agricultural and Forest Meteorology, 268, 32-39.
18.Hu, Z., Wang, G.*, Sun, X., Zhu, M.,Song, C., Huang, K., & Chen, X.(2018). Spatial-Temporal Patterns of Evapotranspiration Along an Elevation Gradient on Mount Gongga, Southwest China.Water Resources Research, 54(6), 4180-4192.
19.Chen, X., Wang, G.*, Zhang, T., Mao, T., Wei, D. A.,Song, C., ... & Huang, K.(2017). Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region.Science of the Total Environment, 601, 1389-1399.
20.Chen, X., Wang, G.*, Huang, K., Hu, Z.,Song, C., Liang, Y., ... & Lin, S.(2017). The effect of nitrogen deposition rather than warming on carbon flux in alpine meadows depends on precipitation variations.Ecological Engineering, 107, 183-191.
21.Song, X., Wang, G.*, Ran, F., Chang, R.,Song, C.,& Xiao, Y.(2017). Effects of topography and fire on soil CO2and CH4flux in boreal forest underlain by permafrost in northeast China.Ecological Engineering, 106, 35-43.
22.Wang, G.*, Mao,T.,Chang,J.,Song,C.,Huang, K.(2017). Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus.Journal of Hydrology, 550:307-317.
23.Chen, X., Wang, G.*, Zhang, T., Mao, T., Wei, D., Hu, Z., &Song, C.(2017). Effects of warming and nitrogen fertilization on GHG flux in the permafrost region of an alpine meadow.AtmosphericEnvironment, 157, 111-124.
24.Sun, X. Y., Wang, G. X.*, Huang, M., Hu, Z. Y., &Song, C. L.(2017). Effect of climate change on seasonal water use efficiency in subalpine Abies fabri.Journal of Mountain Science, 14(1), 142-157.