水力学与山区河流开发保护国家重点实验室
栏目导航 V
你的位置:学院首页 > 师资队伍 > 学者风采 > 水力学与山区河流开发保护国家重点实验室

王波,男,汉族,1981年11月出生,籍贯四川省广安市岳池县,博士,研究员,博士生导师,第十三批四川省学术和技术带头人后备人选,现任水力学与山区河流开发保护国家重点实验室支部副书记。

个人学习及工作主要经历

1999-2003年:于四川大学热能与动力工程专业读本科,获工学学士学位;

2003-2008年:于四川大学水利水电工程专业硕博连读,获工学博士学位;

2008-2012年,于四川大学水力学与山区河流开发保护国家重点实验室,讲师;

2012-2018年,于四川大学水力学与山区河流开发保护国家重点实验室,副研究员;

2018年至今,于四川大学水力学与山区河流开发保护国家重点实验室,研究员。


担任本科生课程《水力学》与研究生课程《流体力学》、《粘性流体力学》的教学,研究方向为水力学及河流动力学,主要从事明渠非恒定流、水工水力学等领域的研究,如溃坝洪水演进规律、泄水建筑物水流流场。


主持国家自然科学基金项目3项,教育部博士点基金项目1项,四川省重点研发项目1项,四川省科技厅软科学项目1项,横向课题22项;参与国家重点研发计划项目2项、国家自然科学基金项目2项、四川省青年创新团队项目2项以及十余项横向课题。

发表学术论文66篇,其中SCI收录30篇。

参与精品资源共享课《水力学》建设以及“十二五”普通高等教育本科国家级规划教材《水力学》(第5版)修订。

获批国家发明专利8项,软件著作权2件。

荣获四川大学优秀共产党员称号、四川大学青年骨干教师奖、四川大学精品开发课程建设突出贡献奖、四川大学优秀硕士学位论文指导教师。

连续两届研究生毕业论文被评为全国高等学校水利类专业优秀研究生学位论文,1份硕士学位论文被评为四川大学优秀硕士学位论文。

后附:常用邮箱

wangbo@scu.edu.cn


纵向科研项目

[1] 滩地植被化复式河槽中溃坝水流结构时空演变特性及洪水波传播规律研究,国家自然基金面上项目,负责人;

[2] 基于滩槽间非恒定质量输移的溃坝水流结构及洪水波演进规律研究,国家自然科学基金面上项目,负责人;

[3] 高佛汝德数泄洪隧洞明流弯道水力特性研究,国家自然科学基金青年基金项目,负责人;

[4] 高流速无压隧洞弯道水力特性研究,教育部博士点基金项目,负责人;

[5] 基于城市电子眼系统的洪涝区水深分布及流速场一体化实时监测关键技术,四川省重点研发项目,负责人;

[6] 四川省“十四五”及中长期公共卫生与公共安全领域科技发展战略研究,四川省科技厅软科学项目,负责人;

[7] 青藏高原重大滑坡动力灾变与风险防控关键技术研究,国家重点研发计划项目,主研;

[8] 梯级库群溃决规模的激增机制,国家重点基础研究发展计划课题,主研;

[9]   唐家山堰塞湖水量平衡与溃口形式及洪水演进,国家自然科学基金项目,主研;

[10] 土石过水围堰溢洪水力特性研究,国家自然科学基金青年科学基金项目,主研;

[11] 流域开发条件下洪水灾害预测方法及影响和对策研究,四川省青年科技创新研究团队项目,主研;

[12] 高海拔水电工程安全关键技术,四川省青年科技创新研究团队项目,主研。

横向科研项目

承担了多条流域上水电站/水库的溃坝洪水计算及应急预案编制,主要包括:大渡河巴拉、长河坝、黄金坪、龙头石、冶勒、龚嘴、铜街子、沙湾、安谷水电站;嘉陵江宝珠寺、亭子口水电站;涪江武都、水牛家水电站;黑水河毛尔盖水电站;雅砻江二滩水电站;宝兴河硗碛水电站;青衣江城东水电站;周公河瓦屋山水电站;岷江紫坪铺水电站;金沙江支流硕曲河去学水电站;沱江金堂峡河道整治工程。

 

近年来以第一/通讯作者在溃坝洪水方面发表SCI学术论文

[1]    Wang, B., Zhang, F.J., Guo, Y.K., Liu, W.J., Sun, H.L. Theoretical investigation of dam-break waves in frictional channels with power-law sections [J]. Ocean Engineering, 2023, 268: 113416. https://doi.org/10.1016/j.oceaneng.2022.113416

[2]    Zhang, F.J., Wang, B.*, Guo, Y.K. Experimental study of the dam-break waves in triangular channels with a sloped wet bed [J]. Ocean Engineering, 2022, 255: 111399. https://doi.org/10.1016/j.oceaneng.2022.111399

[3]    Wang, B., Yang, S., Chen, C. Landslide dam breaching and outburst floods: A numerical model andits application[J]. Journal of Hydrology, 2022, 609: 127733.https://doi.org/10.1016/j.jhydrol.2022.127733

[4]    Liu, W.J., Wang, B.*, Guo, Y.K. Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale[J]. Journal of Hydrology, 2021, 583: 124598. https://doi.org/10.1016/j.jhydrol.2021.126752

[5]    Wang, B., Zhang, F.J., Liu, X., Guo, Y.K., Zhang, J.M., and Peng, Y. Approximate analytical solution and laboratory experiments for dam-break wave tip region in triangular channels [J]. Journal of Hydraulic Engineering, ASCE, 2021,147(9): 06021015.https://doi.org/10.1061/(ASCE)HY.1943-7900.0001928

[6]    Yang, S., Wang, B.*, Guo, Y.K., Zhang, J.M., and Chen, Y.L.Gate-Opening Criterion for Generating Dam-BreakFlow in Non-Rectangular Wet Bed Channels[J]. Energies, 2020, 13(23), 6280. https://doi.org/10.3390/en13236280

[7]    Wang, B., Liu, X., Zhang, J.M., Guo, Y.K., Chen, Y.L., Peng, Y., Liu, W.J., Yang, S., and Zhang, F.J. Analytical and experimental investigations of dam-break flows in triangular channels with wet-bed conditions[J]. Journal of Hydraulic Engineering, ASCE, 2020, 146(10): 04020070. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001808

[8]    Wang, B., Chen, Y.L., Peng, Y., Zhang, J.M., and Guo, Y.K. Analytical solution of shallow water equations for ideal dam-break flood along a wet bed slope[J]. Journal of Hydraulic Engineering, ASCE, 2020, 146(2): 06019020. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001683

[9]    Wang, B., Liu, W.J., Wang, W., Zhang, J.M., Chen, Y.L., Peng, Y., Liu, X., and Yang, S. Experimental and numerical investigations of similarity for dam-break flows on wet bed[J]. Journal of Hydrology, 2020, 583: 124598. https://doi.org/10.1016/j.jhydrol.2020.124598

[10]Liu, W.J., Wang, B.*, Guo, Y.K., Zhang, J.M., and Chen, Y.L. Experimental investigation on the effects of bed slope and tailwater on dam-break flows[J]. Journal of Hydrology, 2020, 590: 125256.https://doi.org/10.1016/j.jhydrol.2020.125256

[11]Wang, B., Liu, W.J., Zhang, J.M., Chen, Y.L., Wu, C., Peng, Y., Wu, Z.Y., Liu, X., and Yang, S. Enhancement of semi-theoretical models for predicting peak discharges in breached embankment dams[J]. Environmental Fluid Mechanics, 2020, 20: 885–904.https://doi.org/10.1007/s10652-019-09730-9

[12]Wang, B., Zhang, J.M., Chen, Y.L., Peng, Y., Liu, X., and Liu, W.J. Comparison of measured dam-break flood waves in triangular and rectangular channels[J]. Journal of Hydrology, 2019, 575: 690–703. https://doi.org/10.1016/j.jhydrol.2019.05.081

[13]Wang, B., Chen, Y.L., Wu, C., Peng, Y., Song, J.J., Liu, W.J., and Liu, X. Empirical and semi-analytical models for predicting peak outflows caused by embankment dam failures[J]. Journal of Hydrology, 2018, 562: 692-702. https://doi.org/10.1002/hyp.10896

[14]Liu W.J., Wang, B.*, Chen, Y.L., Wu, C., and Liu, X. Assessing the analytical solution of one-dimensional gravity wave model equations using dam-break experimental measurements[J]. Water, 2018, 10(9):1261. https://doi.org/10.3390/w10091261

[15]Wang, B., Chen, Y.L., Wu, C., Peng, Y., Ma, X., Song, J.J. Analytical solution of dam-break flood wave propagation in a dry sloped channel with an irregular-shaped cross-section[J]. Journal of Hydro-environment Research, 2017, 14: 93–104. https://doi.org/10.1016/j.jher.2016.11.003.

[16]Wang, B., Chen, Y.L., Wu, C., Dong, J.H., Ma, X., Song, J.J. A semi-analytical approach for predicting peak discharge of floods caused by embankment dam failures[J]. Hydrological Processes, 2016, 30(20): 3682–3691. https://doi.org/10.1002/hyp.10896


编辑: 更新时间:2018-04-02 10:55:14 点击量:18085次